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The stability and robustness of metabolic states:
identifying stabilizing sites in metabolic networks
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The dynamic behavior of metabolic networks is governed by numerous regulatory mechanisms,
such as reversible phosphorylation, binding of allosteric effectors or temporal gene expression, by
which the activity of the participating enzymes can be adjusted to the functional requirements of the
cell. For most of the cellular enzymes, such regulatory mechanisms are at best qualitatively known,
whereas detailed enzyme-kinetic models are lacking. To explore the possible dynamic behavior of
metabolic networks in cases of lacking or incomplete enzyme-kinetic information, we present a
computational approach based on structural kinetic modeling. We derive statistical measures for
the relative impact of enzyme-kinetic parameters on dynamic properties (such as local stability) and
apply our approach to the metabolism of human erythrocytes. Our findings show that allosteric
enzyme regulation significantly enhances the stability of the network and extends its potential
dynamic behavior. Moreover, our approach allows to differentiate quantitatively between metabolic
states related to senescence and metabolic collapse of the human erythrocyte. We think that the
proposed method represents an important intermediate step on the long way from topological
network analysis to detailed kinetic modeling of complex metabolic networks.
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Introduction

One of the most challenging goals of computational systems
biology is the development of detailed kinetic models to
simulate and predict the dynamic response of metabolic
networks toward, for example, changes in kinetic parameters
due to pharmacological interventions or variations of envir-
onmental conditions. However, for complex metabolic net-
works comprised of several interwoven pathways, detailed
kinetic modeling is usually not possible due to the inevitable
lack of knowledge about the kinetic properties of the involved
enzymes and membrane transporters. In this work, we extend
a recently proposed method that bridges between topology-
based approaches and explicit kinetic models of metabolic
networks (Steuer et al, 2006). In the face of lacking or
incomplete enzyme-kinetic information, we (i) derive and
compare statistical measures for the relative impact of
enzymatic reactions and parameters on the dynamic proper-
ties (such as local stability) of metabolic networks, (ii)
evaluate the functional role of allosteric feedback regulation

in the stabilization of metabolic networks and (iii) propose
measures to quantitatively evaluate the stability and robust-
ness properties of metabolic states.

Our approach is exemplified and validated using a repre-
sentation of the metabolic network of the human erythrocyte.
Due to the fundamental role of erythrocytes in the oxygen
supply of cells, as well as the relative simplicity of its
metabolism, erythrocytes have been subject to extensive
experimental and theoretical research for decades. Numerous
explicit mathematical models have been developed since the
late 1970s (Rapoport et al, 1976; Ataullakhanov et al, 1981;
Holzhütter et al, 1985; Joshi and Palsson, 1989; McIntyre et al,
1989; Ni and Savageau, 1996a; Mulquiney and Kuchel, 1999;
Nakayama et al, 2005) providing a suitable benchmark to
assess the reliability of our method.

Our approach is motivated by the increasing experimental
accessibility of cellular characteristics, such as metabolic
fluxes and concentrations of metabolic intermediates (Fernie
et al, 2004; Goodacre et al, 2004; Sauer, 2004). Each metabolic
state, characterized by a flux distribution and metabolite
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concentrations, is associated with a unique spectrum of
dynamic properties, as defined by the ensemble of all possible
kinetic models consistent with the respective state. Our main
focus thus lies on a quantitative characterization and
comparison of the stability properties of metabolic states.

In particular, transitions to instability, occurring via a loss of
a stable steady state, were previously argued to play a crucial
role in senescence and metabolic collapse of erythrocytes and
may act as a primary signal for cell removal in patients with
hemolytic anemia (Schuster and Holzhütter, 1995; de Atauri
et al, 2006).While usually an investigation of such transitions
necessitates the construction of explicit kinetic models, our
approach allows to draw quantitative conclusions about the
stability of metabolic states in response to an increased ATP
demand, occurring, for example, under conditions of osmotic
or mechanic stress (Kodicek, 1986; Dariyerli et al, 2004). It is
demonstrated that different metabolic states, each satisfying
the flux balance equation and thermodynamic constraints, can
nonetheless show drastic differences in the ability to ensure
stability and maintain metabolic homeostasis.

As our method requires no detailed information about
enzyme-kinetic rate equations and parameters and due to its
computational simplicity it is applicable to large metabolic
networks. In particular, as the construction of explicit
kinetic model is usually not feasible, our method significantly
extends previous approaches to metabolic robustness, often
based on topological or stoichiometric considerations
alone (Edwards and Palsson, 2000; Stelling et al, 2002;
Deutscher et al, 2006; Tekir et al, 2006). We argue that
dynamic aspects of metabolic networks are becoming more
and more important in view of modern techniques like siRNA
knockdowns or genetic modifications (Bailey, 1991; Becker
et al, 2005) to modify the activity of individual enzymes
in vivo. It has to be expected that such perturbations may give
rise to fundamental changes in the dynamic behavior of the
underlying network.

Results

The parameterization of metabolic states

A metabolic network is a set of coupled chemical reactions and
transport processes. Neglecting spatial variations of the
metabolite concentrations within the reactions compartments
the time-dependent changes of the metabolite concentrations
can be described by a set of differential equations of the form
Ṡ¼Nn(S), where S denotes the m-dimensional vector of
metabolite concentrations, N denotes the m� r-dimensional
stoichiometric matrix and n(S) denotes an r-dimensional
vector of enzyme kinetic reaction rates. In the case of lacking
or incomplete enzyme-kinetic data and assuming the existence
of a stationary state S0, the differential equation can be
interpreted as linear equation for the stationary reaction rates
n0¼n(S0). The mass balance equation Nn0¼0 provides the
conceptual foundation for current stoichiometry-based ap-
proaches to metabolic network analysis and brought forth a
number of highly successful applications to determine the
structure and function of metabolic networks (Varma and
Palsson, 1994; Schuster et al, 1999; Stelling et al, 2002).
Recently, the flux balance equation was supplemented with

thermodynamic constraints, providing a link between feasible
flux distributions and metabolite concentrations (Holzhütter,
2004; Henry et al, 2006; Kümmel et al, 2006; Hoppe et al,
2007).

However, the mass balance equation itself, along with its
associated thermodynamic constraints, does not allow to draw
any conclusions about the possible dynamics or potential
instabilities of a metabolic state. To obtain information about
essential aspects of the dynamics, we thus augment the mass
balance equation with the first-order expansion of the
differential equation. Given a metabolic system at a (possibly
unknown and not necessarily unique) metabolic state,
characterized by n0 and S0, the system of differential equations
can be approximated by a Taylor series expansion.

dS

dt
¼ NvðS0Þ|fflfflfflffl{zfflfflfflffl}

¼0

þN
qv
qS

jS0|fflfflfflffl{zfflfflfflffl}
¼:J

ðS � S0Þ þ . . . ð1Þ

The first term describes the steady-state properties of the
system, as exploited by flux–balance analysis to constrain the
stoichiometrically feasible flux distributions. Along similar
lines, taking the next term of the expansion into account, the
structure of the Jacobian matrix J constrains the possible
dynamics of the system at each metabolic state.

Our method builds upon a statistical evaluation of the
Jacobian matrix. Based on the formalism of structural kinetic
modeling (Steuer et al, 2006), we construct a parametric
representation of the Jacobian matrix, such that each element
covers the comprehensive parameter space at a specific
metabolic state. In particular, the Jacobian matrix can be
written as the product of two matrices K and hx

m. The elements
of the matrix K are fully specified by the metabolic state
of the system. In addition, the (usually unknown) elements of
the matrix hx

m specify the relative saturation of each enzyme
with respect to its ligands and can be assigned to well
defined intervals even when the explicit functional form
of the rate equations is not known. In the following,
these matrix elements are denoted by saturation parameters
ym

r , where r stands for the reaction saturated by metabolite
m. A brief mathematical synopsis is given in Materials
and methods.

Evaluating the Jacobian matrix with respect to the (un-
known) elements of the matrix hx

m then defines the spectrum or
scope of dynamic behavior at the respective metabolic state.
The proposed workflow is summarized in Figure 1. First, the
stoichiometry and a metabolic state n0 and S0 are specified,
based on available experimental data and existing mathema-
tical models. Second, an ensemble of Jacobian models is
generated by assigning random values to the elements of hx

m,
obeying the defined intervals. Evaluating the eigenvalues of
the Jacobian matrix repetitively, allows to investigate and
compare the scope of dynamic behavior under different
preconditions, for example, suppressed or absent allosteric
regulation. In this respect, especially the largest real part of the
eigenvalues, denoted by lRe

max, is of interest, as it relates to the
slowest timescale of the system and, if positive, implies (local)
instability of the metabolic state. The metabolic state is stable
only if all eigenvalues have a negative real part (see also
Materials and methods).
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The role of regulation
Allosteric regulation is one of the main mechanisms to control
enzyme activity. Since allosteric regulation occurs within
metabolic networks as feedback or feed-forward loops, it
operates network-wide and affects the dynamic properties at a
systems level. The presented approach is used to analyze the
effects of allosteric regulation on stability in a systematic way.
Two sets of models under different preconditions are created,
both corresponding to the normal in vivo conditions of the
erythrocyte (see Figure 1 for a schematic representation of the
energy and redox metabolism of the human erythrocyte and
the abbreviations used). Within the first set of models Cnoreg all
saturation parameters associated with allosteric effectors are
fixed to zero, corresponding to absence of regulatory interac-
tions. In addition, a second set Creg is constructed by assigning
all saturation parameters, including those for allosteric
regulation, to their respective intervals (see Materials and
methods and the Supplementary information for details).

Each Jacobian model is evaluated according to its spectrum
of eigenvalues, with lRe

max40 implying instability of the
metabolic state. In the case of absence of allosteric regulation,
corresponding to the set Cnoreg, the proportion of dynamically

stable models is approximately 81% (see Figure 2 for the
estimated probability density functions of the largest real part
lRe

max). Thus, although vast majority of the models are stable,
the proportion of unstable models cannot be neglected. As
dynamic stability is mandatory for the existence of the
metabolic state, it indicates a substantial risk for the
unregulated network to be driven out of the observed steady
state when changes of the binding constants for the substrates
occur for genetic or pharmacological reasons.

Within the whole set, no (Jacobian) model is found
exhibiting more than one eigenvalue larger than zero,
suggesting that the occurrence of a Hopf bifurcation is, at
least, rare under the precondition of suppressed allosteric
regulation. Since a Hopf bifurcation indicates the transition to
sustained oscillation, such dynamical behavior seems unlikely
under these conditions. Looking at the set Creg, thus including
allosteric regulation, the proportion of stable models shifts to
91%, which is significantly higher than in case of suppressed
regulation (see Materials and methods). Similar observations
were made by Ni and Savageau (1996b), where additional
regulation was introduced to a model to stabilize the steady
state. Note that here regulation is only defined qualitatively,

Figure 1 Energy and redox metabolism of the human erythrocyte and the proposed workflow: the stoichiometry and the steady-state concentrations and fluxes are
extracted from existing models and available experimental data. The Jacobian matrix is established and the intervals for the saturation parameters are specified
according to available biological information and/or additional constraints of interest. The saturation parameters are sampled repeatedly and the eigenvalues of the
Jacobian are evaluated. Abbreviations: Glc, glucose; Glc6P, glucose-6-phosphate; Fru6P, fructose-6-phosphate; Fru16P2, fructose 1,6-bisphosphate; GraP,
glyceraldehydes-3-phosphate; DHAP, dihydroxyacetone phosphate; 13P2G, 1,3-bisphosphoglycerate; 23P2G, 2,3-bisphosphoglycerate; 3PG, 3-phosphoglycerate;
2PG, 2-phosphoglycerate; PEP, phosphoenolpyruvate; PYR, pyruvate; LAC, lactate; 6PG, 6-phosphoglycanate; Ru5P, ribulose-5-phosphate; Xul5P, xylulose-5-
phosphate; Rib5P, ribose-5-phosphate; S7P, sedoheptulose-7-phosphate; E4P, erythrose-4-phosphate; PRPP, phosphoribosyl pyrophosphate; GSH, reduced
glutathione; GSSG, oxidized glutathione; GlcT, glucose transport; HK, hexokinase; GPI, glucose-6-phosphate isomerase; PFK, phosphofructokinase; ALD, aldolase;
TPI, triosephosphate isomerase; GAPD, glyceraldehyde phosphate dehydrogenase; PGK, phosphoglycerate kinase; DPGM, 2,3-bisphosphoglycerate mutase;
DPGase, 2,3-bisphosphoglycerate phosphatase; PGM, 3-phosphoglycerate mutase; EN, enolase; PK, pyruvate kinase; LDH(P), lactate dehydrogenase; Lact, lactate
transport; AK adenylate kinase; G6PD, glucose-6-phosphate dehydrogenase; 6PGD, 6-phosphogluconate dehydrogenase; GSSGR, glutathione reductase; EP, ribose
phosphate epimerase; KI, ribose phosphate isomerase; TK, transketolase; TA, transaldolase; PRPPS, phosphoribosylpyrophosphate synthetase; PRPPT,
phosphoribosylpyrophosphate transport.
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that is, the actual strength of each regulatory interaction is
chosen randomly and varies between the individual samples.
Nonetheless, even without specific fine-tuning of parameters,
allosteric regulation results in a higher proportion of stable
networks. This is presumably evolutionary advantageous,
since a larger parameter subspace corresponding to stable

models increases the flexibility to optimize parameter towards
additional requirements other than stability.

Within the set of unstable models, 592 out of 106 samples in
Creg have two eigenvalues greater than zero, in each case
exhibiting complex conjugate imaginary parts. A smaller
fraction (41 samples) shows three eigenvalues larger than
zero, pointing to bifurcations of higher co-dimension.
Although restricted to a very small region in parameter space,
allosteric regulation thus expands the scope of dynamical
behavior by increasing the region in parameter space where
oscillatory or more complex dynamics can be expected.

Furthermore, we tested if the observed increase is specific
for the actual set of regulation parameters or if it can be
achieved by any randomly chosen set of allosteric regulation
parameters. To this end, instead of the actual regulation
parameters, 10 putative allosteric regulations were selected
randomly and the increase in the percentage of stable models
was recorded. Most random sets (B85%) of regulation
parameters lead to a decrease in the percentage of stable
models, demonstrating that not every possible arbitrary
allosteric regulation has a positive effect on stability.

The ranking of parameters

Stability of a metabolic steady state is an emergent systemic
property that is brought about by the kinetic properties of all
enzymes. Nevertheless, changes in the kinetic parameters of
individual enzymes may have quite differential impact on the
stability of a given steady state. To evaluate and compare the
degree of influence of individual parameters and reactions on
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Figure 2 The probability density function of the largest real part lRe
max within the

spectrum of eigenvalues for both sets Cnoreg and Creg. A value lRe
max40 implies

instability. Allosteric regulation significantly suppresses the number of unstable
models. Interestingly, the probability density function for Creg does not show a
shift toward more negative lRe

max, but rather an increase at the peak.

Figure 3 All significant saturation parameters (red dots) for both sets of models Cnoreg (absent allosteric regulation, left plot) and Creg (included allosteric regulation,
right plot). Allosteric regulation by a metabolite, which is neither substrate nor product is marked by a small circle instead of an arrowhead. For brevity, only the ranking
according to the correlation coefficient is considered.
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the stability and response to perturbations, we rank the
parameters according to several objective measures. Three
distinct measures are used and compared with each other,
namely the (Pearson) correlation coefficient, the mutual
information and the Kolmogorov–Smirnov test (KS test) (see
Materials and methods for explicit definitions).

All three measures were evaluated for all saturation
parameters for both sets of models Cnoreg and Creg. Although
the detailed ranking of the parameters is not identical, it is still
consistent with respect to all different measures. Figure 3
depicts the significant parameters for both sets of models
Cnoreg and Creg. Figure 4 exemplifies the influence of the most
highly ranked parameters on the stability of the metabolic
state. The percentage of stable models within the parameter
space as a function of selected saturation parameters is shown.
For a more detailed discussion and comparison of the different
rankings see also the Supplementary information.

The ranking of parameters allows for several significant
conclusions about the role of regulation within the metabolic
network. First, almost all high-ranked parameters are asso-
ciated with reactions involved in ATP production or consump-
tion. Especially the PFK, HK and PK play an important role in
stabilizing the network. Interestingly, evaluating the set Cnoreg

reveals that, although no additional information about
putative sites for allosteric regulation is included, mainly
those parameters are ranked very high that affect reactions
that are known to be allosterically regulated (see Materials and
methods for a statistical verification of this assertion). We

point out that for the construction of Cnoreg, only the
stoichiometry and the metabolic state under normal condi-
tions were used. This emphasizes the usefulness of our
approach to analyze the metabolic networks that are not as
well studied as the one of erythrocytes, and where detailed
information about allosteric regulation is not available.

Several more observations can be made from the ranking of
the parameters. First, the high-ranked parameters almost all
belong to enzymes of the glycolytic pathway. Intriguingly,
kinetic alterations of the allosterically regulated enzyme
G6PD, which is known to control the flux through the pentose
phosphate pathway, does not show significant impact on
stability. This corresponds with results from de Atauri et al
(2006), obtained from an explicit kinetic model. The authors
show that the metabolic network breaks down for low
concentrations of the glycolytic enzymes, whereas such a
transition to instability does not occur if the enzymes of the
pentose phosphate pathway are at very low concentrations.
Second, all parameters associated with 23P2G as an allosteric
effector are relatively low ranked. This indicates that the main
function of these regulatory mechanisms is not to maintain or
achieve stability.

Comparison with the explicit model

The availability of a comprehensive and well-established
mathematical model of the erythrocyte metabolism (Schuster
and Holzhütter, 1995) allows to validate our method by
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Figure 4 Relationships between selected saturation parameters and the probability of stable models. Shown is the case of suppressed allosteric regulation (A–C) and
for included allosteric regulation (D–F). In each case, a single saturation parameter is fixed while all others parameters are chosen randomly. The dotted red line marks
the overall averages, 81% in the case of Cnoreg and 91% in the case of Creg. The plots D and F show saturation parameters associated with allosteric regulation.
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comparing the ranking of saturation parameters with results of
metabolic control analysis (MCA; see Heinrich and Schuster,
1996). As metabolic instability of the erythrocyte may occur if
the energy demand exceeds the glycolytic ATP production, we
study the impact that changes in the kinetic parameters of the
various enzymes of the network have on ATP utilization. The
relative change of the rate of ATP utilization (nATPase) elicited
by a (small) change of the Michaelis constant characterizing
affinity of metabolite M to enzyme E is given by the flux control
coefficient.

CATPase
KE

M
¼ qlnvATPase

qlnKE
M

¼ KE
M

vATPase

qvATPase

qKE
M

ð2Þ

Note that negative values of the flux coefficient indicate that
decreasing value of the Michaelis constant (corresponding to
increasing saturation) increases the rate of ATP production and
thus stabilizes the steady state. Calculating the flux control
coefficient for all 85 Michaelis constants occurring in the rate
laws of the mathematical model and ranking them in
ascending order reveals that only 10 affinity parameters each
contribute significantly to the energetic stabilization and
destabilization of the network (Figure 5). Changes in the
Michaelis constants for binding of AMP and ATP to the
phosphopfructokinase (PFK) have by far the highest impact on
the ATP production. This underlines the well-known central
regulatory importance of this enzyme for red cell glycolysis.
Remarkably, the set of 20 regulatory most relevant Michaelis
constants determined by MCA of the basis of the full
mathematical model comprises all saturation parameters
identified by our random sampling method.

Robustness of metabolic states

As yet our analysis has focused on the analysis of a single
metabolic state corresponding to the normal in vivo conditions
of the erythrocyte. However, the energy metabolism of this cell
has to cope with large fluctuations of the ATP demand as the
activity of the Na/K-ATPase, accounting for about 70% of the

total ATP utilization, is greatly enhanced under conditions of
osmotic stress (Dariyerli et al, 2004) or mechanic stress
exerted during passage of the cell through thin capillaries
(Kodicek, 1986). Moreover, because of lacking de novo protein
synthesis the erythrocyte is extremely susceptible to enzyme
deficiencies which typically result in an impairment of
glycolytic ATP production and subsequent break down
(hemolysis) of the cell (Jacobasch and Rapoport, 1996).

To demonstrate the discriminatory power of our approach to
detect changes in the stability properties of metabolic states,
we thus consider a second metabolic state of the erythrocyte,
characterized by an increased energy demand. To this end, we
use the kinetic model to calculate fluxes and metabolite
concentrations at a sixfold higher energetic load as compared
with the normal reference state. Switching from the normal in
vivo state (kATPase¼1.6 mM/h) to the new steady state at
increased energetic load (kATPase¼10 mM/h), the glycolytic
flux increases from 1.5 to 2.33 mM/h (¼155%); whereas the
ATP concentration decreases from 1.6 to 0.56 mM(¼35%).
These relative changes are in excellent agreement with
experimental data (160% increase of glycolytic flux at 35%
decrease of ATP) obtained by successively decoupling
glycolysis from ATP consumption by means of arsenate
titrations (Ataullakhanov et al, 1981).

The parameterization of the second state S2
0 is performed as

described before, with all saturation parameters, including
allosteric regulation, sampled randomly from their respective
intervals. Figure 6 depicts the resulting distribution of the
largest real eigenvalue lRe

max within the spectra of eigenvalues,
as compared to the distribution under normal conditions (state
S1

0). While for normal in vivo conditions, the proportion of
stable Jacobian models was approximately 91%; this value
drops drastically to only about 13.2% for the second state S2

0.
This is in accordance with our earlier observation that energy
related reactions are most crucial with respect to stability, as
well as with the fact that in the detailed kinetic model of
Schuster and Holzhütter (1995) the system is able to
compensate an increased energy load only up to an upper
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critical value, but breaks down if the energy demand is
increased any further. We emphasize that both states cannot
be discriminated based on stoichiometric considerations
alone: Both satisfy the flux balance equation and are
consistent with thermodynamic constraints.

The proportion of unstable models alone, evaluated over the
comprehensive parameter space of a metabolic state, does not
necessarily imply actual instability of the respective flux
distribution. However, the proportion of unstable models has
significant consequences for the ability of the system to
maintain the considered metabolic state at perturbations of
enzyme-kinetic parameters (Morohashi et al, 2002). To
evaluate the robustness properties of both states quantita-
tively, we consider two distinct scenarios: First, for both
metabolic states random instances of stable models are
repeatedly selected from the parameter space and the set of
parameters is subsequently perturbed within a given radius.
The percentage of perturbations that remain stable, as a
function of the magnitude or radius of the perturbations, then
serves as a quantitative measure of robustness. See Figure 7A
for a schematic representation. Second, to make the results for
both metabolic states more comparable, the parameter space
from which random instances of models are selected is
restricted to a small interval with lRe

maxA[0, �0.01] for both
states. Again each parameter set is perturbed with increasing
radius and the frequency with which a given magnitude of
perturbations leads to instability is recorded. The results are
shown in Figure 7.

Clearly, for both metabolic states the probability that a
perturbation results in a loss of stability increases with
increasing magnitude of perturbations. However, starting (by
construction) with initially 100% of stable models, the fraction
of models that become unstable increases significantly faster
for the state S2

0. This effect is even more pronounced in the
second scenario. Here, the stable models for both metabolic
states are initially restricted to similar real parts within the
spectra of the eigenvalues, and thus to similar distances to the
bifurcation. Nonetheless, a perturbation of the (initially stable)

metabolic state S2
0 is much more likely to result in a transition

to instability than corresponding perturbations of the normal
state S1

0. In this sense, the in vivo metabolic state S1
0, and

concomitantly also its observed that flux distribution is more
robust than the second state S2

0. We emphasize again that our
quantification of robustness does not involve any knowledge
about the explicit functional form of the rate equations or
kinetic parameters. Nonetheless, different metabolic states can
be clearly differentiated, based only on information about
metabolite concentrations and associated flux patterns. In this
respect, our approach gives valuable insights on the qualita-
tive and quantitative dynamic behavior of metabolic states
that cannot be obtained by considering the stoichiometric
balance equation alone and is also applicable to situations
where detailed knowledge about the explicit rate equations is
not yet available.

Discussion and conclusions

A central goal of metabolic regulation is homeostasis, that is
the maintenance of a stable quasi-stationary state under
largely varying external conditions. In this work, we present a
kinetic-free approach that enables the identification of those
enzymes and putative allosteric regulators having the largest
impact on the stability of experimentally observed metabolic
steady states. Our analysis was focused on three different
aspects: first, the role of allosteric regulation was elucidated by
comparing the dynamic behavior of the network under
suppressed and allowed allosteric regulation. The proportion
of stable models is significantly increased by allosteric
regulation, showing that feedback regulation has a stabilizing
effect. Second, three statistical measures were introduced to
quantify the influence of enzymatic reactions and saturation
parameters on stability in a systematic way. The parameters
were ranked according to these measures. Intriguingly, almost
all high-ranked parameters are involved in one of the three
reactions HK, PFK or PK, corresponding to those reactions that
are indeed highly regulated and almost irreversible. We note
that these results also hold when knowledge about allosteric
regulation and irreversibility is not presupposed in the initial
analysis. Third, we provided a quantitative measure to analyze
different metabolic states with respect to their robustness
towards perturbations in parameters. We compared the in vivo
state with a second metabolic state, corresponding to an
increased energy demand of the cell. With respect to
robustness, the in vivo state is clearly superior in accordance
with the fact that high energy demand will lead to a metabolic
collapse of the red blood cells.

Our approach is essentially based on the knowledge of
stoichiometry and metabolic state of the system. While
detailed kinetic models are available for only very few
metabolic networks, knowledge of metabolite concentrations
and flux distributions becomes increasingly experimentally
accessible (Fernie et al, 2004; Goodacre et al, 2004; Sauer,
2004). In this respect, we have demonstrated that different
metabolic states, only characterized by a flux distribution and
metabolite concentrations, are indeed associated with a
unique spectrum of dynamic capabilities and can be differ-
entiated based on their stability properties. As our method
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Re for two metabolic states.

Under increased energy load (S2
0) a significantly higher percentage of unstable

models is observed, as compared with normal conditions (S1
0). In both cases

allosteric regulation is included.
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specifically samples the parameter space associated with a
given metabolic state, it can be directly related to experimental
observations and thus improves methods based on a
straightforward sampling of kinetic parameters within an
explicit kinetic model (von Dassow et al, 2000).

In particular, we expect that recent efforts for biotechnolo-
gical modifications of metabolic systems will concomitantly
result in fundamental changes in the dynamic behavior of
these networks. While a desired flux distribution might be
stoichiometrically feasible, unanticipated changes in dynamic
properties can lead to a failure of network function. The weak
preconditions and the semi-automatic and straightforward
manner of its implementation thus make our approach a
suitable starting point to elucidate and detect changes in
dynamic properties of metabolic networks for which the
construction of detailed kinetic models is not yet possible.

Materials and methods

Models of the human erythrocyte

To exemplify and validate our approach, we mainly draw upon a
previously published model of Schuster and Holzhütter (1995),

consisting of 30 metabolites and 31 reactions (see Figure 1 for a
schematic representation). The model was slightly modified to
account for free inorganic phosphate and additional transport
reactions for the educt glucose, the intermediate phosphate and the
end products phosphoribosyl pyrophosphate, pyruvate and lactate.
Mg-complexes were omitted. All reactions, except ATPase, GSHox
and PRPPT, were treated as reversible. As ATPase and GSHox are
merged overall reactions describing energy consumption and oxida-
tive load, product inhibition for these reactions was not included, that
is, ADP and GSSG have no influence on ATPase and GSHox,
respectively.

The kinetic model was used to calculate the steady metabolic state
of the human erythrocytes under normal in vivo conditions (state S1

0).
Metabolite concentrations and flux values are given in the Supple-
mentary information. In addition to the normal in vivo state S1

0, a
second steady-state S2

0 was calculated, corresponding to an increased
energy demand of the cell. Analogous simulations were performed
previously to explore senescence and metabolic collapse of erythro-
cytes (Schuster and Holzhütter, 1995; de Atauri et al, 2006); see also
Tekir et al (2006) for an analysis of red blood cell enzymopathies based
on stoichiometric analysis.

Structural kinetic modeling

Our analysis is based on a decomposition of the Jacobian matrix of a
metabolic system at a state S0 into a product of two matrices. Given a
metabolic system consisting of m metabolites and r reactions, the set of
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differential equations S¼Nn(S), which describe the time-dependent
behavior of all metabolite concentrations Si(t) can be rewritten as

d

dt

SiðtÞ
S0

i

¼
Xr

j¼1

v0
j

S0
i

Nij|fflffl{zfflffl}
:¼Lij

vjðSÞ
v0

j|ffl{zffl}
:¼mjðSÞ

ð3Þ

where Si
0 and nj

0¼nj(S
0) denote the metabolic state at which the system

is to be evaluated. Using the definitions given in (3) and the variable
transformation xi(t)¼Si(t)/Si

0, the Jacobian with respect to the
normalized variables x is

Jx ¼ Khmx with hmx :¼ qm
qx

jx0¼1 ð4Þ

The scaled Jacobian Jx is related to the original Jacobian by a simple
similarity transformation and it is fully specified by the parameter
matrices K and hmx. The elements of K describe the time scales of the
system, as specified by the metabolic state S0 and n(S0). The (usually
unknown) elements of hmx are defined as the normalized derivatives of
the reaction rates and, analogous to the scaled elasticity coefficients of
MCA, denote the effective kinetic order or normalized saturation of
each reaction with respect to its substrates. Each element yS

v is
constrained to the interval of [0,1] if the metabolite S is a substrate and
[0,�1] if S is a product of the reaction n(S). Additional non-zero terms
arise from allosteric regulation. Allosteric regulation is included by
assigning the corresponding parameter to intervals, such that
yS
nA[0,�n] for inhibition and yS

nA[0, n] for activation of a reaction n
by S, respectively. A detailed derivation is given elsewhere (Steuer
et al, 2006).

Statistical sampling of the parameter space
The stability and possible dynamics of the metabolic network are
evaluated at a given metabolic state, characterized by metabolite
concentrations S0 and fluxes n(S0). The vector of reaction rates
satisfies the steady-state condition Nn(S0)¼0 and is described by r-
rank(N)-free parameters. The vector of metabolite concentrations S0 is
restricted by thermodynamic constraints (Henry et al, 2006; Kümmel
et al, 2006) and approximated by values adapted from Schuster and
Holzhütter (1995). The metabolic state fully specifies the matrix K. To
evaluate the dynamic capabilities at a given metabolic state, the non-
zero elements of the matrix hmx are sampled from their predefined
intervals (Wang et al, 2004; Steuer et al, 2006), while the elements of
the matrix K are restricted to the respective metabolic state. The
schematic workflow is shown in Figure 1.

Specifically, each reversible enzyme-kinetic reaction ni(S) is split
into a forward ni

þ (S) and backward rate n�(S) and described by the
overall steady-state flux ni

0, the flux ratio g¼n�(S0)/nþ (S0), the steady-
state S0, as well as by a set of saturation parameters yv

si
. Although the

method does not presuppose a specific functional form of the rate
equations, we illustrate the parameterization using a generic form of
enzyme-kinetic rate equations, such as

A þ B $ P þ Q v ¼
vm AB � PQ=Keq

� �
f A;B; P;Qð Þ ð5Þ

where f (A, B, P, Q) denotes a first order polynomial. The reaction is
characterized by the net flux n0, the steady-state concentrations A0, B0,
C0, D0, as well as the flux ratio g¼n�/nþ , relating to the (often
accessible) equilibrium constant Keq. The four unknown saturation
coefficients apply to forward and backward rate separately, obeying
the relationships yA

nþA[0, 1] and yA
n�¼yA

nþ�1A[0,�1] for substrates
and yP

nþA[0, �1] and yP
n�¼yA

nþ þ 1A[0, 1] for products, respectively.
The model of the erythrocyte is parameterized by 87 saturation

parameters for substrate and product dependencies of each reaction, as
well as 10 additional parameters corresponding to allosteric regulation.
See Supplementary information for a detailed listing. The parameters
are denoted with reactions (superscript) and substrate (subscript)
respectively, that is, yFru6P

PFK denotes the dependence of the phospho-
fructokinase (PFK) on fructose-6-phosphate (Fru6P).

Stability and dynamics of metabolic states
Our method is based upon a statistical evaluation of the Jacobian
matrix. In particular, a metabolic state that satisfies the steady-state
condition Nn(S0)¼0 must not necessarily be stable. Rather, its dynamic
stability is determined by the eigenvalues of the Jacobian at the
respective state. Each eigenvalue describes the behavior of the system
after an (infinitesimal) perturbation of the concentrations (Heinrich
and Schuster, 1996). The possible dynamics in the vicinity of a
metabolic state are schematized in Figure 8: The metabolic state can
either be (i) a stable (attracting) steady state, characterized by a largest
real part of the eigenvalues lmax

Re o0 (ii) an unstable (repelling) state,
characterized by a positive largest real part lmax

Re 40 within the
spectrum of eigenvalues, or (iii) a stable (attracting) focus, character-
ized by non-zero (complex conjugate) imaginary parts lmax

Re ±lmax
Im with

lmax
Re o0 and lmax

Im a0, (iv) an unstable focus, characterized by a positive
real part lmax

Re 40 and complex conjugate eigenvalues lmax
Im a0.

Of particular interest are also transitions between the scenarios
(bifurcations), most importantly the Hopf bifurcation, where a pair of
complex conjugate eigenvalues cross the imaginary axis (stable -
unstable focus) and bifurcations of the saddle-node type, where the
largest real part within the eigenvalues crosses the imaginary axis
(stable node -unstable saddle). Further types of bifurcations are
discussed in Steuer et al (2006). We emphasize that stability does not
imply constancy of a metabolic state. Rather, local dynamic stability is
mandatory for the existence of the state, but all actual states will
fluctuate around their average values (Steuer et al, 2003). All reported
results are robust against small deviations of metabolite concentra-
tions and flux values, that is, an analysis with small alterations of the
metabolic state under normal conditions yields identical results.

A simple example
To illustrate our approach, we briefly consider the simple example
pathway depicted in Figure 9.

Within our approach, not assuming any further knowledge of the
explicit rate equations and parameters, the system is parameterized by
the matrices K and hA

m

L ¼ v0
1

A0
� v0

2

A0
� v0

3

A0

	 

y ¼

0
ym2

A

ym3
A

2
4

3
5 ð6Þ

where K defined the metabolic state of the system, constraint by
n1

0¼n2
0þ n3

0. For simplicity, we assume linear dependence of n2(A) on
its substrate A, and thus yA

m2¼1. The parameter yA
m3A[1�n, 1] includes

possible non-linear inhibition of n3(A) by its substrate A. As the units
of times and concentrations are arbitrary, we set n1

0¼1 and A0¼1
without loss of generality. The Jacobian at an observed metabolic state
(specified by the matrix K) is thus given as

J ¼ �1 þ v0
3ð1 � ym3

A Þ ð7Þ
Figure 9 shows the region of stability of the observed state n3

0 versus the
(unknown) parameter yA

m3. More importantly, the observed metabolic
state, here only characterized by n3

0, restricts the stability properties of

Figure 8 The stoichiometric balance equation Nn0¼0 does not imply actual
stability of a metabolic state. Although each of the depicted scenarios fulfills the
steady-state condition, the dynamic behavior can be classified as (i) stable node,
(ii) unstable saddle (iii) stable focus, corresponding to damped transient
oscillations and (iv) unstable focus, corresponding to (undamped) transient
oscillations (Heinrich and Schuster, 1996).
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the state. For small flux the observed state is always stable, that is,
there exists no set of parameters such that the state is unstable.
However for high flux n3

0 the system might lose stability and is stable
only in a small region of the (unknown) parameter space. This
behavior is again exemplified in Figure 10, using explicit differential
equations. Starting in the vicinity of the metabolic state {A0, n3

0}, all
other parameters are chosen randomly from the comprehensive
parameter space. For small n3

0 (left plot), the system will always decay
back to the state. Hence, the steady state remains stable, independent
of the actual value of y3

A. However, for large n3
0 (right plot) the

probability of instability increases. For some perturbations of yA
3 the

steady state becomes unstable, i.e. the initial state cannot be restored.
The systems transit into a new stable steady state with concentrations
of A different from the initial value A¼1. In this sense, the observed
metabolic state puts constraints on the possible dynamics and allows
to quantify the existent size of unstable regions in parameter space.
The perturbation analysis shows that the metabolic state with small n3

0

is more robust against changes in parameters than a metabolic state
with large n3

0.

The role of regulation

The evaluation of models (Jacobians) for Creg and Cnoreg was repeated
103 times and the percentage of unstable instances recorded. In both
cases, the variance of the values, due to finite sampling effects, was
estimated numerically. A t-test was used to test the average values for
both cases Creg and Cnoreg against each other. The null hypothesis that
the expectation value in case of allowed allosteric regulation is equal or
lower than in case of suppressed allosteric regulation is rejected with a
P-value below 10�320. So allosteric regulation significantly increases
the frequency of stable models.

Ranking of parameters

To assess the relative impact of enzyme-kinetic parameters on the
stability properties of a given metabolic state, we employed and
compared several measures of dependency.

The most common choice to detect dependencies between variables
is the (Pearson) correlation coefficient r, defined as

rðX;YÞ :¼
Pn

i¼1 ðxi � xÞ ðyi � yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
n
i¼1ðxi � xÞ2 P n

i¼1ðyi � yÞ2
q ð8Þ

where xi and yi are n realizations of the random variables X and Y.
Although the Pearson correlation only detects linear dependencies,
it holds the advantage that its sign specifies whether a parameter must
be increased or decreased to obtain a higher percentage of stable
models. Nonetheless, the Pearson correlation suffers from several
drawbacks, such as sensitivity to non-Gaussian and skewed distribu-
tions, making more elaborate measures necessary (Kumar and
Shoukri, 2007).

A more general measure of dependency is given by the mutual
information (Shannon, 1948), defined as

IðX;YÞ ¼ HðXÞ þ HðYÞ � HðX;YÞ ð9Þ
where H(X)¼

P
kpk(x) logpk(x) denotes the entropy of the variable X,

measured from a binned histogram such that each bin occurs with
probability pk. The entropy H(X,Y) denotes the joint entropy of X and
Y. Among its main advantages is that the mutual information is zero if
and only if both variables are statistically independent. Evaluating the
mutual information between network parameters and the resulting
largest real part of the eigenvalue lRe

max thus accounts for arbitrary
nonlinear dependencies and does not presuppose Gaussian or uniform
distribution of the parameters. A detailed account of its numerical
estimation is given elsewhere (Steuer et al, 2002).

Based on a slightly different concept, the KS test is used to test for
the equality of two distributions. The null hypothesis in the context of
our analysis is as follows: if a saturation parameter has no impact on
the stability of the metabolic system, then its distribution within the
restricted subset of stable models equals (in a statistical sense) its
initial distribution for the comprehensive set of models. On the other
hand, if the distribution of a parameter within the restricted set of
stable models shows a strong deviation from the initial distribution, a
significant dependency can be expected. In this sense, the KS test
determines whether two random variables X and Y have the same
distribution. The cumulative frequencies FX and FY and the maximal
difference

D ¼sup
z2R

jFXðzÞ � FYðzÞj ð10Þ

are calculated. If the test statistic D is greater than the critical value for
the sample size, the null hypothesis that both distributions are equal is
rejected. Since D is always identically distributed, the KS test is
independent of the distribution of X and Y. If the test rejects the null
hypothesis, given a sufficiently small P-value, the parameter under
consideration has significant impact on stability.

All measures yielded consistent results, as depicted in Figure 11.

Significance of ranking
To test for the significance of the correlation coefficient and the mutual
information, we employed a permutation test: the values of lRe

max were
randomly permuted in order to abolish any relationship between the
saturation parameters and lRe

max. This yielded mean values of the
correlation coefficient and the mutual information close to zero
(o5�10�5) and standard deviation of 3.1�10�3 and 2.5�10�4,
respectively. The correlation coefficient and the mutual information
for the high-ranked parameters are indeed significantly larger than
those obtained in case of totally unrelated saturation parameters.

To verify the assertion that there is an enrichment of actual feedback
parameters in the top-ranking parameters, we conducted two
statistical tests (i) for the ensemble of models with absent regulation
(Cnoreg), we verify that high-ranking parameters are primarily
associated with reactions that are actually allosterically regulated
(PK, PFK, PK, G6PD and 6PDG). To this end, we record the fraction
of parameters associated with regulated reactions within the top
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k-ranked parameters. This number is then compared (statistically) to
the number that must be expected if the high-ranking parameters are
indeed randomly distributed across all reactions. The results are
depicted in Figure 12A (as a function of k) and show a clear significant
enrichment of parameters associated with regulated reactions among
the top-ranking parameters; (ii) for the ensemble of models including
allosteric regulation (Creg), we evaluate if regulation parameters are
statistically overrepresented in the set of top-ranking parameters.
Again, we record the expected number of regulation parameters within
the k top-ranking parameters, based on a purely random distribution of
parameters. This value is compared with the actual number of
regulation parameters within the set of top-ranked parameters. The
result is again significant and depicted in Figure 12B.

Implementation
All calculations were made using MATLAB, Version 7.3.0.298. The
code is available upon request.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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